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Abstract—An efficient computer synthesis technique for
waveguide components, based on rigorous field-theoretical
models, has been developed. A computer code has been specif-
ically set up for the automatic design of fixed phase shifters in
rectangular waveguide technology. Only the electrical specifi-
cations are required to generate, normally in 15 to 20 minutes
on a 386/16 MHz IBM PC, the geometrical structure of the
components. The agreement with the experiments is shown to
be so accurate as to avoid any tuning of the circuits realized.

The efficiency and accuracy of the code is based on i) a suit-
able segmentation technique of the microwave structure to ob-
tain a very simple but rigorous network model; ii) the efficient
representation of the modal series for the electromagnetic fields;
iii) a synthesis procedure based on a simplified model to obtain
a good initial guess for the final full-wave optimization routine.

I. INTRODUCTION

HE computer-aided design (CAD) of microwave cir-

cuits consists basically of the following phases: i)
modeling, ii) analysis, and iii) optimization {1]. Though
distinct, the three phases are strictly interlaced. For ex-
ample, the optimization consists of a number of repeated
analyses, according to some strategy. The iterative pro-
cess is terminated successfully when the circuit specifi-
cations are met.

The overall efliciency of the CAD procedure depends
on the efficiencies of the single phases and must be eval-
uated in view of the entire fabrication process. The ac-
curacy of the model thus its reliability, in fact, influences
the efficiency, since it makes it possible to simplify or
even avoid costly and time consuming experimental work.
On the other hand, as the accuracy of the model is im-
proved, the associated computational (and analytical) ef-
fort is normally increased also. As optimization usually
requires hundreds or thousands iterations, one is normally
forced by limited computer capabilities to employ rela-
tively simple, thus approximate, models.

On the other hand, many applications require extremely
accurate design capabilities to minimize costs of manu-
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facturing, to determine the effects of mechanical toler-
ances, to predict the effects of imperfections in the fab-
rication process, etc. This is not only true in the area of
(M)MIC’s, but also in the more conventional area of
waveguide circuits. A typical example is that of space ap-
plications. Sophisticated antenna performances of modern
satellite communication systems involve the design of
quite complex microwave networks with very strict re-
quirements [2].

In spite of the considerable developments of computing
resources in recent years, progress has still to be made to
improve the computational efficiency of the theoretical
models for microwave structures. Very accurate models
are required that, at the same time, involve relatively
modest computer expenditures.

This paper is aimed to give a contribution in this direc-
tion. An efficient computer synthesis technique for wave-
guide components, based on rigorous field-theoretical
models, has been developed. A computer code has been
specifically set up for the automatic design of fixed phase
shifters. Only the input electrical specifications are re-
quired to generate the geometrical structure of the cir-
cuits. The agreement with the experiments is such as to
avoid any tuning of the circuits realized.

An initial guess for the waveguide phase shifter ge-
ometry is first determined by synthesizing an approximate
but still rather accurate model. The accurate choice of the
initial guess is of great importance in determining the ef-
ficiency (and the success) of the final optimization. The
latter is based on a full-wave but numerically simple
model to adjust the geometry to the final dimensions.

The model adopted is based on the application of the
microwave network formalism in conjunction with a suit-
able segmentation of the microwave structure into rectan-
gular cells. Employing extremely efficient representations
of the modal series for calculating the generalized admit-
tance matrices of the cells, simple analysis procedures for
even complex waveguide structures are obtained.

The synthesis technique can be applied not only to other
waveguide components, such as filters, couplers, etc., but
can also be extended, with proper modifications, to MIC
circuits. The case of microstrip circuits, however, can be
made much simpler than the waveguide case by adopting
the planar circuit approach [3], thus a 2-dimensional mag-
netic wall model. In such a case, because of the modified
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boundary conditions, the impedance matrix is to be used
instead of the admittance matrix.

Segmentation is a common procedure in any computer
analysis of microwave structures with complex geome-
tries [4], [5]. For totally irregular shapes only strictly nu-
merical methods such as Finite Difference or Finite Ele-
ment methods can be applied. In many practical cases,
however, irregular shapes can be subdivided into simple
rectangular geometries. These cases lend themselves to
the application of mode-matching (MM) techniques,
which are particularly suited in rectangular coordinates.
The way the segmentation procedure is applied, however,
affects the efficiency of the resulting computer code. One
type of segmentation can result in an analysis procedure
one order of magnitude faster than another. Some ideas
on efficient segmentation techniques have been presented
in [6] for the case of multiport branch-guide couplers and
are reviewed in Section II for the case of stub-loaded rect-
angular waveguides. This is, in fact, the structure chosen
for the realization of fixed phase shifters [7], [8]. In Sec-
tion III-A, the generalized admittance matrix of micro-
wave circuits is formulated in terms of the dyadic Green’s
function.

Besides the efficiency of the model, the efficiency of
the analysis depends on the representation of the electro-
magnetic fields in the structure. Actually, certain efforts
have been made in the literature to increase the efficiency
of the MM technique by suitably accounting for edge sin-
gularities [9]-[12]. This can be done by adopting proper
singular basis functions for expanding the field quantities
at the diaphragm or step edges. In this paper, however,
the MM method is applied in a slightly unconventional
form, the fields being expanded in terms of cavity modal
series. Fast convergent series expressions are obtained by
choosing the proper Green’s function representation. Al-
though, in principle, the same technique as in [11], [12]
could be applied, this would lead to a quite involved
mathematical treatment, with questionable numerical ad-
vantages. The discussion on the field modal series and the
use of the various Green’s function expressions, special-
ized to the case of E-plane waveguide structures, is pre-
sented in Section HI-B. A comparison of the various for-
mulations in terms of numerical efficiency is given in
Section III-C. The specific synthesis procedure for wave-
guide stub loaded phase shifter is illustrated in Section
IV, while theoretical and experimental results are pre-
sented in the last Section.

II. SEGMENTATION TECHNIQUES FOR THE MICROWAVE
NETWORK MODELING OF WAVEGUIDE COMPONENTS

The mode-matching method is based on the expansion
of the electromagnetic (EM) field in a waveguide in terms
of its normal modes. The boundary conditions at a junc-
tion between different waveguides lead to a linear system
of equations in the expansion coefficients. By virtue of the
equivalence between guided modes and transmission
lines, the microwave network formalism can be devel-

oped, where each mode is represented by a transmission
line. Systems of equations in the modal expansion coef-
ficients at the junctions are represented by generalized
multiport networks, where each electrical port corre-
sponds to a given mode. In a similar and more general
fashion, any microwave circuit can be represented by a
generalized multiport networks. Here we recall that a mi-
crowave circuit is a region enclosed by metallic walls of
any shape and communicating with the exterior only by
way of a number of transmission lines or waveguides,
which may be called the terminals of the circuit. [13].

With the application of the microwave network for-
malism, the analysis of a complex microwave structure is
reduced to that of the overall equivalent network resulting
from the connection of its constituent elements. These are
junctions, waveguide sections and microwave circuits (in
the sense already specified). ’

Among the efforts to improve_the efficiency of the
mode-matching method, not much attention has been de-
voted to reducing the complexity of the overall equivalent
circuit by identifing the most suitable segmentation of the
structure. Actually, when designing components with
complicated geometries and a great number of junctions,
computer time can be reduced by even one order of mag-
nitude by selecting the proper segmentation technique.

The point will be illustrated at the example of the struc-
ture of Fig. 1(a), which represents a phase shifter [7] con-
sisting of a rectangular waveguide section loaded with a
number N; = 4 of E-plane stubs. The presence of H-plane
discontinuities [8] is not considered for the moment. The
structure can be regarded also as the cascade of 2N, = 8
waveguide discontinuities of alternating enlargement- and
reduction-type. Note that Fig. 1(a) can also represent a
waveguide filter,

Conventionally, the analysis strategy, which is the ba-
sis for the Generalized Scattering Method (GSM) [14],
consists of associating a generalized multiport network to
each discontinuity, then analyzing the resulting equiva-
lent network, Fig. 1(b). The computer effort for one com-
plete analysis involves 4N, — 1 = 15 matrix inversions.
The S-matrix of each step, in fact, requires one matrix
inversion for its computation. The size of the matrix to be
inverted equals the number of modes at the narrow side
of the junction. Seven additional inversion are required to
compute the cascade connection of the 8 S-matrices of the
model of Fig. 1(b). )

A more advantageous procedure consists of viewing
Fig. 1(a) as consisting of 4 cells (or cavities) (regions 1,
3, 5 and 7) connected by 3 waveguide sections. This is

- obtained by grouping together one enlargement-type with

the successive reduction-type step. Each cell constitutes
a microwave circuit that can be represented by a multiport
nctwork. The overall equivalent citcuit is shown in Fig.
1(c). This segmentation has been called the cellular seg-
mentation [6]. The numerical advantage is actually greater
than one could imagine by comparing at a first glance Fig.
1(c) and (b).



1486

()

Fig. 1. (a) Schematic of waveguide structure with E-plane steps for the
realization of fixed plase shifter [7]. (b) Generalized equivalent circuit of
Fig. 1(a) using the conventional Generalized Scattering Method. Steps are
represented by multiport networks connected by uniform transmission lines.
(c) Generalized equivalent circuit of Fig. 1(a) using the cellular segmen-
tation technique (CST). Cells are represented by multiport networks con-
nected by uniform transmission lines. (d) Another cellular segmentation
(‘“transverse segmentation’’) of Fig. 1(a). (e) Generalized equivalent cir-
cuit of Fig. 1(a) using the segmentation of Fig. 1(d).

In fact, as has been proved in [6] and will be shown in
‘the next section, the multiport network model of each cell
does not require any matrix inversion if the admittance
matrix representation is adopted, while only one inversion
would be necessary for the scattering matrix computation.
As a consequence, the total number of matrix inversions
for the circuit of Fig. 1(c) is equal to the number of wave-

guide sections connecting the stubs, thus only N, — 1 =

3.

The idea of segmenting the geometry into cells instead
of discontinuities and waveguide sections therefore re-
duces substantially the complexity of the overall equiva-
lent circuit; in conjunction with the admittance matrix
representation a notable further computational advantage
is obtained. A special case of cellular segmentation can
be applied to the geometry of Fig. 1(a) when, as is usually

the case, the waveguide height ‘b’ is constant throughout

the length of the phase shifter. This implies that regions
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2, 4, 6 have the same height as the input and output wave-
guides. A further reduction of the computer expenditure
is achieved by the segmentation shown in Fig. 1(d). The
entire waveguide length is seen as a cavity with six out-
puts, four being terminated by shorted stubs. The remain-
ing outputs are placed far enough from the stubs so that
all higher order modes have died out. In this manner, after
removing all internal ports between the cavity and the
stubs, the Y-matrix of the cavity is reduced to the 2 X 2
admittance matrix of the whole structure. This segmen-
tation corresponds to the so called transverse segmenta-
tion technique (TST) [6]. The equivalent circuit corre-
sponding to Fig. 1(d) is shown in Fig. 1(e). All connecting
waveguide lengths are eliminated, the circuit consisting
only of the equivalent networks of the cells.

‘One additional aspect concerning the numerical effi-
ciency of the segmentation is the number of ports of the
various ¢lements. It is known that MM exhibits the rela-
tive convergence phenomenon, so that, generally speak-
ing, the number of ports is higher the wider the size of
the connection. It turns out, in particular, that the TST
(Fig. 1(e)) is especially convenient over both the cellular
segmentation (Fig. 1(c)) and, particularly, the GSM,
when the stubs are long and narrow. In such a case a high
number of ports are required in Fig. 1(c), while a few
ports are necessary for Fig. 1(e).

In conclusion, the waveguide structure of Fig. 1(a) can

" be more efficiently modeled using the admittance matrix

representation and adopting the segmentation scheme of
Fig. 1(e). In this manner only one matrix inversion is nec-
essary. On the contrary, the use of the conventional gen-
eralized scattering matrix for each step, would require 15
matrix inversions.

III. COMPUTATION OF THE GENERALIZED ADMITTANCE
MATRIX

The segmentation procedure described in the previous
Section determines a simple circuit topology (Fig. 1(e))
where the admittance matrices of the cells constituting the
waveguide structure have to be evaluated. The field the-
oretical procedure for the efficient computation of the
constituent Y-matrices is described in this Section. The
procedure is especially efficient for the Y-matrix. When
preferred, the scattering matrix can be evaluated from the
admittance matrix using standard formulas.

A. Generalized Admittance Matrix of a Cavity:
Formulation of the Problem

Consider first an arbitrary microwave circuit R, en-
closed by a perfectly conducting surface S where N, phys-
ical outputs S; (Fig. 2) are produced. The EM field in R,
is determined uniquely by the knowledge of the tangential
electric field over the output S;. By slightly modifying the
treatment in [16], the magnetic field in R, can be ex-
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Fig. 2. A microwave network with Np = 3 outputs.

pressed as

h(r) =jcoe §>Sn X E(r') - G(r, r') dS'

= jwe Z S n X E@)- GG r)ds (1)

the integral over S belng reduced to the only portions S;
where n X E is not zero. In (1) the quantity n X E can
be interpreted as a magnetic surface current flowing on S;.
G is the dyadic Green’s function for the magnetic field in
R,. It is a solution of

VXV xXG-KkG -

Ié(r —r'). inR, (2

0 onS§ 2
where k2 = W e, I is the unit dyadic, 6 is the Dirac delta
function. ,

The relationships among field quantities at the openings
S; can be formulated in terms of a generalized admittance

matrix by expanding the tangential E- and H-fields into a
suitable set of vector basis functions

n XV X

o)
I

' Ni
HO — Z 10, (3b)

~ N; being the number of basis functions taken into account

on §;. The vector basis functions in (3a) and (3b) need not -

to be the same, but this choice leads to a Galerkm -type
procedure having variational properties. The ¢{’s can be
any complete orthonormalized set of vector basis func-
tions. They are chosen, as usual, as the modal eigenvec-
tors of a waveguide having S; as the cross section. The
series in (3a, b) are truncated to N; terms for numerical
reasons. . "

The expansion coefficient V,(j)

and I,(f) represent the

equivalent voltage and current on the kth electrical port.

on the output S;. They are related to the respective ﬁeld
-quantities on §; by

VO = SS,. nx E®@ - 6P dr (4a)

I(l)

S H@) - ¢ dr (4b)
Si
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Cdmbining (4b) with (1) and (3a) we obtain

p l

I(]) Z Z Y(Jl) (1) (5)

where
Vil = S S ¢ - G r') - & ¢ ) drdr' (6)
5 Jsi B

defines the generalized admittance matrix of R,. This .
quantity represents the amplitude of the mth current com-
ponent entering the jth opening produced by a unit kth
component of the voltage at the ith opening, all the other
voltage components being zero. ‘
As already pointed out in [19] no matrix inversion is
necessary to compute the generalized admittance matrix.
This is due to the fact that the -admittance matrix is the
natural representation of a cavity with conducting walls.
When a magnetic wall model is adopted for microstrip

- circuit, the impedance matrix is the most eﬁic1ent network.

representation.

The drawback with the Y-matrix is that it possesses po-
lar singularities (see (A2) in the appendix), thus numeri-
cal overflow may occur occasionally. In the computations
made for present study, however, such an event has never
been observed.

When the cavity has only one opening, as is the case
of the stub regions 2, - 5 of Fig. 1(d), expression (6)
holds fori =j = 1 only

At the connection between two cells say cells 1 and 2
of Fig. 1(d), it is easily seen that the continuity of the
magnetic field is equivalent, in network terms, to the di-
rect connection between the corresponding ports of the
equivalent networks.

B. Green’s Functzon Representatzons for Rectangular
Cells

Once the general expression (6) for the generalized ad-
mittance matrix has been derived, we obtain now the
expression for the Green’s function relevant to the present
problem. We will refer to a rectangular cell such as cell
No. 1 of Fig. 1(d), the specialization to the stub cells
being straightforward. For clarity, ~the geometry is
sketched in Fig. 3. Outputs No. 1 and N are placed along
the y-axis and correspond to the output ports of the struc-

"~ ture, while outputs 2 to N — 1 are to be connected to the

stubs.

- With respect to the general case, a basic simplification
is obtained since the structure of Fig. 1(d) is uniform in
the x-direction and the EM field is excited by the domi-
nant TE;, modes incident from the input waveguides. The
x-dependence is therefore determined by sin (wx/a), or
cos (wx/a) depending on the field component, and no
x-component for the electric field exists. The EM field in
each cell can be described by means of a scalar magnetic
potential (LSE modes), or equivalently in terms of the H, -
component. In practice, the computation of the dyadic
Green’s function is reduced to the G,, component only.
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Fig. 3. Side-view of a rectangular resonator corresponding to cell 1 of Fig.
1(d), where outputs ports 2 through N — 1 are connected to short circuited
stubs.

Renaming G,, simply as G, and dropping the
x-dependence, the differential problem (2) becomes

V’G + k%G =8y — y') 8z — 2") 7
with homogeneous Neumann boundary condition
aG
— =0 on S. 7)
on

In (7) k'* = k? — (n/a)?, ‘@’ being the cell size in the
x-direction, and
9
Vi=— + —.
ay? = az*

For a rectangular cell of sizes b and c¢ along the y and
z-directions respectively, the Green’s function can be ob-
tained in terms of resonant modes [15]. The resulting
expression is

o0 [o<]

oG(y; zZ, y” Z’) — Z Smn(ys Z) Emn(y » % )

=0 g() 2 2
m n k,z.-— inl _ n_—”E
() - (%)

®
where &,,, (y, 2) are the eigenmodes of the cell:
€mEn mmwy nrz
= [ o5 —2 cos —, 9
&nn be cos b cos p )

€n = lform =0,¢, =2form # 0. G(y, z; ¥, 7")
represents the magnetic field distribution H,(y, z) due to
a unit pulse of electric field E,(y’, z') or, equivalently,
to a unit pulse of magnetic current M, (y’, z').

A considerably more efficient way to express the
Green’s function of our rectangular cell consists of re-
placing the double series over (1, n) in (8) with a single
series over m or n. This can be done by expressing the
EM field in terms of waveguide modes instead of cavity
modes. Two convenient alternative expressions can be
obtained (see [20]) depending on whether the y- or
z-direction is taken as the propagation direction. For
propagation in the z-direction one obtains

G = 2 £, (3"

with
ZI
e = {
z

€08 k2. €08 ky,(c — z5)
k,, sin k,, ¢

z>7z z z>7
Zs =
z< 7 ' <z

(10)
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where k2, = k'* — k2, and k,,, = mw /b and

Fa() = | cos 7T .

Similarly, for propagation in the y-direction the following
expression for the Green’s function is obtained

cos ky, Y.< €08 ky, (b — y5)

yG = 2 gn(2) 8n(2")

€, nw
8.2 = |~ cos—z
C C

where k2, = k'* — k2, and k,,, = mn /c.

kyy sin ky, b

1D

C. Numerical Efficiency of the Various Representations

The numerical advantage of using a single instead of a
double series needs not to be stressed. The present ap-
proach should not be confused with that in [21], where
two modal series are replaced by one.

The choice between the two alternative expressions (10)
or (11) for G ultimately depends on the convergence of
the resultant series for the generalized Y-matrix of the cell
(see Appendix). In practice, the numerical advantage of
using , G or , G is determined by the locations of the ports
and on the sizes of the cell.

In order to illustrate this point, we have computed the
various expressions for the generalized Y-matrix of a rect-
angular cell b X ¢ (b = 9.52 mm, ¢ = 37 mm). For
analogy with the notation adopted for the Green’s func-
tion expressions, we will denote the Y-matrix expressions
with the symbols ,Y, .Y, or ,Y depending on whether
expression (8), (10) or (11) for G is employed. The mag-
netic field eigenvectors of normal modes of rectangular
waveguides have been used as vector basis functions ¢,.
They are given in the Appendix along with the admittance
matrix elements.

Let us first observe that, since port 1 extends to the
entire b size of the cell, the series for ,Y @D reduce to a
single term, and provides therefore the most efficient
expression. This is due to the fact that the expanding
functions ¢, on the outputs have been selected as the nor-
mal modes of the corresponding waveguide. For the same
reason, the double series for , Y& reduces to a single
series that coincides with Y&,

To give an idea of the convergence behavior of such
series, Fig. 4 shows the relative error pertaining to the

. 2 . .
series for , Y (11’ b or, equivalently ,Y 521’1), while the con-

. . 2
vergence behaviors of the series for ngl’ 1), yY(131’ 1),

, Y5y is shown in Fig. 5 for a distance d, = 10 mm and
for w; = 4.5 mm between the two outputs. Note that dif-
ferent vertical scales have been used in these, as well as
in the following figures.

In spite of the good convergence behaviors shown in
Figs. 4 and 5, the series (10) is obviously to be preferred
as it provides the correct value with just one term.
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Fig. 4. Convergence behavior of the mutual admittance OY?{” or yY(fl’l’ .
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Fig. 5. Convergence (()Zf the mutual admlttances between perpendicular
outputs: yY21 (=--) lel ---), szl ( ).

Let us now examine the element Y %‘2) which corre-
sponds to the self-admittance of the dominant mode at
output 2 (w, = 4.5 mm), i.e., the input admittance seen
at output 2 by the dominant mode when all the other out-
puts are shorted. The convergence behaviors of Yu ? and

yYii @2 are shown in Fig. 6, while that of the double series

Y(2 2 is plotted in Fig. 7.
For a given accuracy (e.g., a relative error of 1%), the
numerical effort associated with.the computation of
Y @2 s extremely higher (almost 1000 times) than with
the smgle series (10) or (11).
1t should be noted that the computation of the self-ad-
mittance is the most cumbersome from a numerical point
of view. For the trans-admittances seen at same physical
port (e.g., output 2), but between different modes (i.e.
using different expanding and testing functions m # k in
(6)), the convergence is much faster. This is shown, for
example, in Fig. 8 for Y( » and yY(122’2) and Fig. 9, for
the double series , Y7, @2 . To get an accuracy of the order
of 1%, the double series requires approximately 40 terms,
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Fig. 6. Convergence behaviors of the series , Y37 and Y(lz,'z).
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Fig. 7. Convergence behavior of the double series , Y.
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Fig. 8. Convergence behavior of zY 12 » and Y(122 .

16 terms are required for ,Y %2),

(2,2)

enough for Y5

while only 2 terms are

In the evaluatlon of the trans-admittances between dif-
ferent physical ports, such as outputs 2 and 3, different
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Fig. 10. Convergence of;Y(lzl‘% and , Y7 ford; = 8 mm.

rates of convergence are expected depending on the dis-
tance between the outputs. In particular, when modes
propagating along z are used, only one or two terms are
expected to be necessary to achieve very accurate results.
This is confirmed by Fig. 10, showing the convergence

behaviors of the series Y (121 ? and yY (121 * for the trans-ad-
mittance between the dominant modes at outputs 2 and 3
Y (11’3). The convergence behavior of Y 52{3) is shown in
Fig. 11. Both Figs have been plotted for a distance d; =
8 mm between output 2 and 3. Only two terms for
X 521 3)‘arf: sufficient to get an almost exact result,

When outputs 2 and 3 are put to a very close distance
d; = 1 mm, the convergence rate is lower for all series,
as shown in Fig. 12. In any case, the series involving
modes propagating in the z-direction always exhibits the
highest convergence rate, providing very accurate results
with no more than 5 terms.

In summary, the adoption of proper field expansions in
the evaluation of the scalar Green’s functions make it pos-
sible to evaluate almost analytically the generalized ad-
mittance matrices of the rectangular cells into which
waveguide components, and specifically the phase shifter
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Fig. 12. Same as Fig. 10 except with d5 = 1 mm.

sketched in Fig. 1(d), can be segmented. In most cases,
in fact, the Y-matrix elements expansions can be reduced
to just one term. In the examples examined, the worst
case is that of the self admittances which require up to 6
terms to get an error less than 1%.

IV. SYNTHESIS OF WAVEGUIDE PHASE SHIFTER

In the previous Sections rigorous field-theoretical tools
for very fast and accurate computer analyses of wave-
guide components have been described. The theory has
been presented for the case of E-plane waveguide struc-
tures. In this case the EM fields can be described in terms
of LSE® modes only, but the same principles apply to
cases when both E- and H-plane discontinuities are pres-
ent.

This section is devoted to the specific application de-
veloped, i.e., to the automatic synthesis of waveguide
phase shifters. Such components are typically employed
in antenna beam-forming networks. Requirements in
terms of wide band and compact design are very strict.
Automatic design tools which can avoid costly experi-
mental work dre of paramount importance.
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An effective technique for realizing waveguide fixed .

phase shifters consists of loading a waveguide section with
a number of stubs.

A rigorous field-theory CAD of stub-loaded phase-shif-.

- ter has recently been presented by Dittloff er al. [7]. One
limitation of their procedure is that the required phase shift
is obtained with reference to a waveguide section of proper
length. To allow the differential phase shift to be achieved
with respect to a waveguide of the same length, the ‘@’
dimension of the waveguide phase shifter was introduced
in [8} as an additional degree of freedom.

The simultancous use of stub-loading and cutoff shift-
ing to attain better phase shift characteristics can be qual-
itatively explained by the following arguments.

Basically, a fixed phase shifter is required to produce
in a given frequency range a constant phase shift A¢, with
respect to a reference transmission line length. The ideal
phase delay response is obtained by a simple shift of that
of the reference line.

In order to approximate the ideal response one could
change the broader ‘a’ side of the rectangular waveguide,
thus shifting the cutoff frequency. This, however, would
have also the effect of changing the slope of the phase
response, which would become lower if the cutoff is low-
ered.

It can be shown that an opposite effect is obtained by
periodically loading the waveguide with a series induct-
ance realized by short E-plane stubs. The resultant peri-
odic structure has, in a passband, a steeper phase delay
slope. By suitably combining the two effects it is possible
to design extremely compact Broad band phase shifters.
Of course, other solutions are possible, e.g., using ca-
pacitive instead of inductive loads.

In both [7] and [8] an optimization procedure is em-
ployed for the design. Unless a good initial guess is avail-
able, the optimization procedure can be extremely com-
puter intensive or even ineffective. A good initial guess
can be obtained by first synthesizing a periodical struc-
ture. This procedure was shortly described in [17] and is
recalled below in a somewhat modified form. For the sake
of simplicity, the synthesis of the initial guess structure is
described in terms of an equivalent transmission line
model, where discontinuity effects are negiected. In prac-
. tice, the synthesis can be done (see below) using a wave-
guide model for the periodic structure including most of
such effects.

Let ¢.«(f) be the phase delay of the reference wave-
guide, A¢, the required constant phase shift. In a fre-
quency range [ f;, f,] the phase response ¢, of the phase
shifter must be

bp(f) = dwes(f) + A, (12

An additional constraint to be usually imposed on the
phase shifter is that its length must be shorter than the
reference waveguide by a prescribed amount AL.

The phase constant of the reference line is

bret(f) = Bret(f)(L + AL) (13

where (,.;(f) is the phase constant of the reference line
and L is the length of the phase shifter*. The synthesis of
the phase shifter can be made in terms of an equivalent
transmission line section of the same length, which pro-
duces the same phase shift in the same frequency range.
Let 8,(f) be the phase constant of the equivalent trans-
mission line, then its phase delay is

ép(f) = B, (/)L (14)

Combining (12)-(14), the phase constant 8, is obtained
as a function of the specification (12) and the length L of
the phase shifter:

Bo(f) = Bt HA + AL/L) + Ag, /L. (15)

Observe that while AL is always a positive quantity, A¢,
may be either positive or negative. As a consequence, 3,
can be either greater or smaller than 3.

The above equation (15) defines the synthesis problem
for the equivalent transmission line section. The required
phase constant behavior 3, ( f) can be approximated in the
frequency range [ fi, f,] by that of a periodic structure
composed of alternating reactances X and transmission
line sections of characteristic impedance Z; and phase
constant 3; (Fig. 13(a)). The reactances are realized with
shorted stubs of lengths d;, characteristic impedance Z;
and same phase constant 3;.

To reduce mismatchings, a convenient choice for the
cell length d was found to be a quarter wavelength of the
periodic structure at center frequency f, = (fp + f1)/2,
thus

d = 7/(2Bp) (16)

where we have put for simplicity 8,, = 8,(f,). This as-
sumption makes it possible to determine the total length
of the equivalent transmission line, i.e., the phase shifter
length, for any given number N of cells. Since L = Nd,
combining (16) and (15), one obtains

1 N=
L=g— (—2— ~ B oAL — A¢>o>. a7

The required phase constant 8,( f) is thus fully deter-
mined in the whole band by (17) and (15). Incidentally,
it can be observed that (17) establishes a minimum num-
ber of cells N for the physical realizability (L > 0).

From the theory of periodic structures [18], the follow-
ing relation is obtained for the periodic structure of Fig.
13(b):

- d
VA an Bid,) = 2 cos (8,d) — cos (8,d)

18
Z sin (8,d) (18)
where the phase constant of the periodic structure has been
assumed to be the same as the ideal value §,,.

*Qbserve that the length (L + AL) of the reference line must be a posi-
tive quantity for the phase shifter to be realizable. For a zero length ref-
erence line, in fact, a frequency independent phase shift ¢,(f) = A¢,
would result, implying an infinite group velocity.
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Fig. 13. Periodic transmission line (a) and its realization with distributed
elements (b).

le d "
Fig. 14. Elementary cell of the waveguide phase shifter.

Equation (18) cannot be satisfied but approximately.
The three unknown quantities, namely the normalized
characteristic impedance of the stub (Z;/Z;), the stub
length (d;) and the phase constant of the line sections (83;),
can be determined by a simple optimization procedure to
minimize the quadratic error in the operating frequency
band. The initial guess for the number N of cell is in-
creased until the input requirements are met.

The synthesized transmission line model of the phase
shifter is then easily translated into a waveguide model
consisting of the connection of N elementary cells, such
that depicted in Fig. 14. Because of the dispersive char-
- acter of the waveguide, the transformation is made at cen-
ter frequency. Observe that the phase constant 3, of the
transmission lines of Fig. 13 determines the broader ‘a’
size, thus the cutoff frequency, of the waveguide struc-
ture. Since the phase shifter has normally to be connected
to a reference waveguide, two H-plane steps at the ends
of the phase shifter must be introduced.

The structure synthesized by the above procedure pro-
vides the starting point for the final optimization routine
of the phase shifter. Optimization must be applied in or-
der to compensate for discontinuity effects not included
in the simplified transmission line model and to minimize
the insertion loss of the device.

The synthesis procedure described for the transmission
line model can actually be applied directly to the wave-
guide structure, i.e. using the full-wave model to syn-
thesize the waveguide cell of Fig. 14. There is, in fact, a

correspondence between the four parameters (d, d;, Z,/Z,
and ;) of the transmission line cell (Fig. 13) and the four
geometrical parameters (d, d,, b, and a) of the waveguide
cell (Fig. 14). This is actually the procedure that has been
followed. With such a procedure, most discontinuity ef-
fects, i.e. those due to higher order mode insertion within
the single waveguide cell, are already taken into account
in the synthesis procedure, which thus provides an even
better starting point for the final optimization.

V. CoMPUTED AND EXPERIMENTAL RESULTS

Sophisticated phase shifters can be designed automati-
cally with modest computer resources (a 386 IBM PC is
sufficient) by the full-wave synthesis technique described
in the previous Sections. The design input data are used
to generate first a periodically loaded waveguide section.
This is the initial guess for the subsequent optimization
routine where the terminal H-plane steps are included. A
gradient-based (quasi-Newton) optimization routine has
been used.

The theoretical and measured responses of a 9-stub
phase shifter, designed in the band 10.95-12.75 GHz, are
shown in Fig. 15. The phase shifter was designed to pro-
duce a differential phase shift of A¢p = —85° with réspect
to a reference waveguide length AL = 37.04 mm shorter.
With the notation of Fig. 16, the dimensions of the device
are quoted in Table I. Note that the width ‘a’ of the phase
shifter is different from the standard dimension of the
waveguide (as a consequence of §3; being different from
Bref)-

To give an idea of the numerical accuracy of the var-
ious approaches discussed in this paper, the theoretical
responses in Fig. 15 have been computed using the three
representations of Section III, i.e. using z-.and y-propa-
gating modes as well as resonant modes. ‘

- All results are in close agreement, particularly, at lower
frequency. The small disagreement observed (particularly
for the phase at high frequencies) is due to the truncations
in the Green’s functions series and to the limited number
of basis functions on the outputs (only 3 in all cases). In
particular, the resonant mode expansion is estimated to be
slightly less accurate. Better agreements at the expense
of CPU time could be achieved increasing the number of
basis functions. As far as the computer time is concerned,
considerable differences are found. In order to generate
the data plotted in Fig. 15, the use of the double series
requires approximately one hour and a half, while only 2
minutes are required using the single series relative to
modes propagating along z.

Because of the good initial guess, the whole optimiza-
tion routine requires only twenty minutes on a IBM 386
PC-16 MHz.

Equivalent electrical characteristics are exhibited by the
phase shifter of Fig. 17, although it is made of only 6
instead of 9 stubs. This improvement is due to having
adopted a structure with symmetrical double-stubs. Sym-
metry reduces the effects of higher order modes. The ge-
ometry of the modified phase shifter is quoted in Table II.
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0 . : TABLE I

DIMENSIONS (mm) OF A 9-CE.LL PHASE SHIFTER WITH SINGLE STUBS
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TABLE I
DIMENSIONS (mm) OF A 6-CELL PHASE SHIFTER WITH SYMMETRICAL STUBS
(DIMENSIONS ALONG y REFER TO ONE HALF OF THE ACTUAL STRUCTURE TO
TAKE ADVANTAGE OF SYMMETRY)

16.08 b = 4.76
=1t =797 t,b=1t; =872 =1, =826

lg = 1080 L, =1l =360 L, =16 =3.68
3.58

5) =5, =494 5, =5, =540 55 =5, =5.13

I
]

[
|

=
(L]

Ref. waveguide: WR75; Phase shift A¢,: —85°; Length diff. AL: 37.04
mm.

Again, the three representations lead to quite close re-
sults, except that the numerical effort is drastically re-
duced using the representation in terms of modes propa-
gating in the z-direction.

VI. CONCLUSION

An efficient computer synthesis technique for wave-
guide components, based on rigorous field-theoretical
models, has been presented and applied specifically to
waveguide fixed phase shifters. The computer code de-
veloped requires only the electrical specifications to gen-
erate the geometrical structure of the components, in,
usually, fifteen to twenty minutes on a 386/16 MHz IBM
PC. The agreement with the experiments is so accurate as
to avoid any tuning of the circuits realized.

The efficiency and accuracy of the technique is based
on i) the adoption of a suitable segmentation technique of
the microwave structure to obtain a very simple but rig-
orous network model; ii) the efficient representation of the
modal series for the electromagnetic fields; iii) a synthesis
procedure based on a simplified model to obtain a good
initial guess for the final full-wave optimization routine.

Within the limits of validity of the planar circuit model
[3], the technique can be applied with simple modifica-
tions to the synthesis of microstrip circuits.

APPENDIX

The expressions for the generalized admittance matrix
elements of a rectangular cell using the field expansion in
terms of modes propagating along z (Fig. 3) are given in
this Appendix. With the simplifications of Section III-B,
the vector basis functions ¢ have only the x-component,
and can therefore be represented by scalar quantities.

Denoting with ¢; the coordinate where the ith output
port begins, and with w; the width of this port, we have

m—-Dw@— 1)

w;

9 = 9 cos

2, COCYe,

. i . cw,
(—1)"sin kg, (z; + w; — c)I,(fv)n,p — sin Ky, 20 ip + Oy — sin k,, ¢
eﬂ
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where the index m is the order of the basis function and

; fe
Cgl) = |
w;

is the normalizing constant. The elements of the admit-
tance matrix are given by

(AT)

4

i =joe | | oo arar
W,

where ¢ = o, y, z, and the corresponding expressions for
G are given by (8), (10), and (11). Some particular
expression of the admittance elements are given in the
following with reference to the case g = z.

The admittance seen from port 1 corresponds to the ad-
mittance of a short-circuited section of waveguide of
length ¢ and is trivially given by

€m CIg kynC
b ko

where e, = 1 form = 0, ¢, = 2 for m # 0. The same
expression (A2) would also result using ,G, ,G instead
of , G, except the resulting single series has to be summed
analytically to get the cfg function.

The admittance between output port 1, N and output
port j can be also expressed by just one term, namely

YO = jowe (A2)

C(j)Jl(cj)
Y(l’j) . E_m n om A3
enmn Joe b k,, sin k,,c (A3)
with
. g+ w nr
Jl(fz];:" = S cos kzm (¢ — 2) cos ; z - Zj) dz (A4)

% j

easily evaluable analytically.
The admittance between two different output ports
placed on the y = 0 plane is given by a single, rapidly
convergent series of the type
o Y (i H y®
w . € CPCY T ipnT igum
YD = jue 3 O

A
k,, sin k,, ¢ A3

where we have also introduced

i+ w
Lm = S 008 kw2’ €OS — (2' — 7, dz’
a , Wi

The fast convergence of (AS5) is essentially due to the
presence of the sine term, which, for large (imaginary)
values of k,, ¢ behaves as an exponential.

The mutual admittance between different modes m, n
at the same physical output is given by

@

YED = jwe 2
dtw T S T

(A6)

2
sin kzmc[kﬁ,,, - <’;—"> }
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Observe that each term of the series (A6) is the sum of k

three terms. Because of the presence of the hyperbolic
sine the first two terms converge very quickly. The re-
maining term can be easily summed by using the Contour-
Integratlon method [16, p. 812]
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