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A Technique for the Fullwave Automatic Synthesis of

Waveguide Components: Application to Fixed Phase

Shifters
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Abstract—An efficient, computer synthesis technique for

waveguide components, based on rigorous field-theoretical
models, has been developed. A computer code has been specif-

ically set up for the automatic design of fixed phase shifters in

rectangular waveguide technology. Only the electrical specifi-
cations are required to generate, normally in 15 to 20 minutes

on a 386/16 MHz IBM PC, the geometrical structure of the

components. The agreement with the experiments is shown to
be so accurate as to avoid any tuning of the circuits realized.

The efficiency and accuracy of the code is based on i) a suit-

able segmentation technique of the microwave structure to ob-
tain a very simple but rigorous network model; ii) the efficient
representation of the modal series for the electromagnetic fields;

iii) a synthesis procedure based on a simplified model to obtain

a good initial gness for the final full-wave optimization routine.

I. INTRODUCTION

T HE computer-aided design (CAD) of microwave cir-

cuits consists basically of the following phases: i)

modeling, ii) analysis, and iii) optimization [1]. Though

distinct, the three phases are strictly interlaced. For ex-

ample, the optimization consists of a number of repeated

analyses, according to some strategy. The iterative pro-

cess is terminated successfully when the circuit specifi-

cations are met.

The overall efficiency of the CAD procedure depends

on the efficiencies of th-e single phases-and must be-eval-

uated in view of the entire fabrication process. The ac-

curacy of the model thus its reliability, in fact, influences

the efficiency, since it makes it possible to simplify or

even avoid costly and time consum-ing experimental w-ork.

On the other hand, as the accuracy of the model is im-

proved, the associated computational (and analytical) ef-

fort is normally increased also. As optimization usually

requires hundreds or thousands iterations, one is normally

forced by limited computer capabilities to employ rela-

tively simple, thus approximate, models.

On the other hand, many applications require extremely
accurate design capabilities to minimize costs of manu-
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to determine the effects of mechanical toler-

ances, to predict the effects of imperfections in the fab-

rication process, etc. This is not only true in the area of

(M) MIC’S, but also in the more conventional area of

waveguide circuits. A typical example is that of space ap-

plications. Sophisticated antenna performances of modern

satellite communication systems involve the design of

quite complex microwave networks with very strict re-

quirements [2].

In spite of the considerable developments of computing

resources in recent years, progress has still to be made to

improve the computational efficiency of the theoretical

models for microwave structures. Very accurate models

are required that, at the same time, involve relatively

modest computer expenditures.

This paper is aimed to give a contribution in this direc-

tion. An efficient computer synthesis technique for wave-

guide components, based on rigorous field-theoretical

models, has been developed. A computer code has been

specifically set up for the automatic design of fixed phase

shifters. Only the input electrical specifications are re-

quired to generate the geometrical structure of the cir-

cuits. The agreement with the experiments is such as to

avoid any tuning of the circuits realized.

An initial guess for the waveguide phase shifter ge-

ometry is first determined by synthesizing an approximate

but still rather accurate model. The accurate choice of the

initial guess is of great importance in determining the ef-

ficiency (and the success) of the final optimization. The

latter is based on a full-wave but numerically simple

model to adjust the geometry to the final dimensions.

The model adopted is based on the application of the

microwave network formalism in conjunction with a suit-

able segmentation of the microwave structure into rectan-

gular cells. Employing extremely efficient representations

of the modal series for calculating the generalized admit-
tance matrices of the cells, simple analysis procedures for

even complex waveguide structures are obtained.

The synthesis technique can be applied not only to other

waveguide components, such as filters, couplers, etc., but

can also be extended, with proper modifications, to MIC

circuits. The case of microstrip circuits, however, can be

made much simpler than the waveguide case by adopting

the planar circuit approach [3], thus a 2-dimensional mag-

netic wall model. In such a case, because of the modified
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bounda~ conditions, the impedance matrix is to be used

instead of the admittance matrix.

Segmentation is a common procedure in any computer

analysis of microwave structures with complex geome-

tries [4], [5]. For totally irregular shapes only strictly nu-

merical methods such as Finite Difference or Finite Ele-

ment methods can be applied. In many practical cases,

however, irregular shapes can be subdivided into simple

rectangular geometries. These cases lend themselves to

the application of mode-matching (MM) techniques,

which are particularly suited in rectangular coordinates.

The way the segmentation procedure is applied, however,

affects the efficiency of the resulting computer code. One

type of segmentation can result in an analysis procedure

one order of magnitude faster than another. Some ideas

on efficient segmentation techniques have been presented

in [6] for the case of multiport branch-guide couplers and

are reviewed in Section II for the case of stub-loaded rect-

angular waveguides. This is, in fact, the structure chosen

for the realization of fixed phase shifters [7], [8]. In Sec-

tion III-A, the generalized admittance matrix of micro-

wave circuits is formulated in terms of the dyadic Green’s

function.

Besides the efficiency of the model, the efficiency of

the analysis depends on the representation of the electro-

magnetic fields in the structure. Actually, certain efforts

have been made in the literature to increase the efficiency

of the MM technique by suitably accounting for edge sin-

gularities [9]-[12]. This can be done by adopting proper

singular basis functions for expanding the field quantities

at the diaphragm or step edges. In this paper, however,

the MM method is applied in a slightly unconventional

form, the fields being expanded in terms of cavity modal

series. Fast convergent series expressions are obtained by

choosing the proper Green’s function representation. Al-

though, in principle, the same technique as in [11], [12]

could be applied, this would lead to a quite involved

mathematical treatment, with questionable numerical ad-

vantages. The discussion on the field modal series and the

use of the various Green’s function expressions, special-

ized to the case of E-plane waveguide structures, is pre-

sented in Section III:B. A comparison of the various for-

mulations in terms of numerical efficiency is given in

Section III-C. The specific synthesis ‘procedure for wave-

guide stub loaded phase shifter is illustrated in Section

IV, while theoretical and experimental results are pre-

sented in the last Section.

II. SEGMENTATION TECHNIQUES FOR THE MICROWAVE

NETWORK MODELING OF WAVEGUIDE COMPONENTS

The mode-matching method is based om the expansion

of the electromagnetic (EM) field in a waveguide in terms

of its normal modes. The boundary conditions at a @nc-

tion between different waveguides lead to a linear system

of equations in the expansion coefficients. By virtue of the

equivalence between guided modes and transmission

lines, the microwave network formalism can be devel-

oped, where each mode is represented by a transmission

line. Systems of equations in the modal expansion coef-

ficients at the junctions are represented by generalized

multiport networks, where each electrical port corre-

sponds to a given mode. In a similar and more general

fashion, any microwave circuit can be represented by a

generalized multiport networks. Here we recall that a mi-

crowave circuit is a regioti enclosed by metallic walls of

any shape and communicating with the exterior only by

way of a number of transmission lines or waveguides,

which may be called the terminals of the circuit. [13].

With the application of the microwave network for-

malism, the analysis of a complex microwave structure is

reduced to that of the overall equivalent network resulting

from the connection of its constituent elements. These are

junctions, waveguide sections and microwave circuits (in

the sense already specified).

Among the efforts to improve. the efficiency of the

mode-matching method, not much attention has been de-

voted to reducing the complexity of the overall equivalent

circuit by identifying the most suitable segmentation of the

structure. Actually, when designing components with

complicated geometries and a great number of junctions,

computer time can be reduced by even one order of mag-

nitude by selecting the proper segmentation technique.

The point will be illustrated at the example of the strttc-

ture of Fig. l(a), which represents a phase shifter [7] con-

sisting of a rectangular waveguide section loaded with a

number N, = 4 of E-plane stubs. The presence of H-plane

discontinuities [8] is not considered for the moment. The

structure can be regarded also as the cascade of 2N, = 8

waveguide discontinuities of alternating enlargement- and

reduction-type. Note that Fig. l’(a) can also represent a

waveguide filter,

Conventionally, the analysis strategy, which is the ba-

sis for the Generalized Scattering Method (GSM) [14],

consists of associating a generalized multiport network to

each discontinuity, then analyzing the resulting equiva-

lent network, Fig. 1(b). The computer effort for one com-

plete analysis itwolves 4N, – 1 = 15 matrix inversions.

The S-matrix of each step, in fact, requires one matrix

inversion for its computation. The size of the matrix to be

inverted equals the number of modes at the narrow side

of the junction. Seven additional inversion are required to

compute ‘the cascade connection of the 8 S-matrices of the

model of Fig. 1(b).

A more advantageous procedure’ consists of viewing

Fig. l(a) as consisting of 4 cells (or cavities) (regions 1,

3, 5 and 7) connected by 3 waveguide sections. This is

obtained by grouping together one enlargement-type with

the successive reduction-type step. Each cell constitutes

a microwave circuit that can be represented by a multiport
network. The o~erall equivalent circuit is shown in Fig.

l(c). This segmentation has been called the cellular seg-

mentation [6]. The numerical advantage is actually greater

than one could imagine by comparing at a first glance Fig.

l(c) and (b).
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Fig. 1. (a) Schematic of waveguide structure with E-plane steps for the

realization of fixed plase shifter [7]. (b) Generalized equivalent circuit of

Fig. l(a) using the conventional Generalized Scattering Method. Steps are

represented by multiport networks connected by uniform transmission lines.

(c) Generalized equivalent circuit of Fig. l(a) using the cellular segmen-
tation technique (CST). Cells are represented by multiport networks con-
nected by uniform transmission lines. (d) Another cellular segmentation

(’‘transverse segmentation”) of Fig. l(a). (e) Generalized equivalent cir-

cuit of Fig. l(a) using the segmentation of Fig. 1(d).

In fact, as has been proved in [6] and will be shown in

the next section, the multiport network model of each cell

does not require any matrix inversion if the admittance

matrix representation is adopted, while only one inversion

would be necessary for the scattering matrix computation.

As a consequence, the total number of matrix inversions

for the circuit of Fig. l(c) is equal to the number of wave-
guide sections connecting the stubs, thus only N, – 1 =

3.
The idea of segmenting the geometry into cells instead

of discontinuities and waveguide sections therefore re-

duces substantially the complexity of the overall equiva-

lent circuit; in conjunction with the admittance matrix

representation a notable further computational advantage

is obtained. A special case of cellular segmentation can

be applied to the geomet~ of Fig. 1(a) when, as is usually

the case, the waveguide height ‘b’ is constant throughout

the length of the phase shifter. This implies that regions

2,4, 6 have the same height as the input and output wave-

guides. A further reduction of the computer expenditure

is achieved by the segmentation shown in Fig. 1(d). The

entire waveguide length is seen as a cavity with six out-

puts, four being terminated by shorted stubs. The remain-

ing outputs are placed far enough from the stubs so that

all higher order modes have died out. In this manner, after

removing all internal ports between the cavity and the

stubs, the Y-matrix of the cavity is reduced to the 2 x 2

admittance matrix of the whole structure. This segmen-

tation corresponds to the so called transverse segmenta-

tion technique (TST) [6]. The equivalent circuit corre-

sponding to Fig. 1(d) is shown in Fig. 1(e). All connecting

waveguide lengths are eliminated, the circuit consisting

only of the equivalent networks of the cells.

One additional aspect concerning the numerical effi-

ciency of the segmentation is the number of ports of the

various elements. It is known that MM exhibits the rela-

tive convergence phenomenon, so that, generally speak-

ing, the number of ports is higher the wider the size of

the connection. It turns out, in particular, that the TST

(Fig. l(e)) is especially convenient over both the cellular

segmentation (Fig. 1(c)) and, particularly, the GSM,

when the stubs are long and narrow. In such a case a high

number of ports are required in Fig. 1(c), while a few

ports are necessa~ for Fig. 1(e).

In conclusion, the waveguide structure of Fig. 1(a) can

be more efficiently modeled using the admittance matrix

representation and adopting the segmentation scheme of

Fig. 1(e). In this manner only one matrix inversion is nec-

essary. On the contrary, the use of the conventional gen-

eralized scattering matrix for each step, would require 15

matrix inversions.

III. COMPUTATION OF THE GENERALIZED ADMITTANCE

MATRIX

The segmentation procedure described in the previous

Section determines a simple circuit topology (Fig. l(e))

where the admittance matrices of the cells constituting the

waveguide structure have to be evaluated. The field the-

oretical procedure for the efficient computation of the

constituent Y-matrices is described in this Section. The

procedure is especially efficient for the Y-matrix. When

preferred, the scattering matrix can be evaluated from the

admittance matrix using standard formulas.

A. Generalized Admittance Matrix of a Cavity:

Formulation of the Problem

Consider first an arbitrary microwave circuit RO en-

closed by a perfectly conducting surface S where NP phys-

ical outputs Si (Fig. 2) are produced. The EM field in RO

is determined uniquely by the knowledge of the tangential

electric field over the output S’i. By slightly modifying the

treatment in [16], the magnetic field in RO can be ex-
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Fig. 2. A microwave network with Np = 3 outputs.

pressed as

,.

H(r) = jc(x
+

n x E(r’) “ g(r, r’) (LS’
s

Np
—— !jox i~l n X E(r’) o Q(r, r’) dS’ (1)

St

the integral over S being reduced to the only portions $

where n X E is not zero. In (1) the quantity n X E can

be interpreted as a magnetic surface current flowing on Si.

Q is the dyadic Green’s function for the magnetic field in

RO. Itis a solution of

VXVXQ–k2Q =~ti(r -r’) in RO (2)

nxv-x(j=o on S (2’)—

where k2 = U=pe, 1 is the unit dyadic, 6 is the Dirac delta—
function.

The relationships among field quantities at the openings

Si can be formulated in terms of a generalized admittance

matrix by expanding the tangential E- and H-fields into a

suitable set of vector basis functions
Ni

(3a)

(3b)

Ni being the number of basis functions taken into account

on S’i. The vector basis functions in (3a) and (3b) need not

to be the same, but this choice leads to a Galerkin-type

procedure having variational properties. The @~)’s can be

any complete orthonormalized set of vector basis func-

tions. They are chosen, as usual, as the modal eigenvec-

tors of a waveguide having Si as the cross section. The

series in (3a, b) are truncated to Ni terms for numerical

reasons.

The expansion coefficient V:) and Z!) represent the

equivalent voltage and current on the ktln electrical port

on the output Si. They are related to the respective field

quantities on Si by ‘

!
, ~f) = s, n x E(r) “ of)(r) dr (4a)

~
If) = IZ(r) “ @f)(r) dr (4b)

Si

Combining (4b) with (1) and (3a) we obtain

l(j) = ~ ~ y~~)v~)
m (5)izlkcl

where

,!!Y:;) = Sj s,r$~)(r) “ G(r, r’) “ r#f)(r’) dr dr’ (6)

defines the generalized admittance matrix of RO. This

quantity represents the amplitude of the mth current com-

ponent entering the jth opening produced by a unit kth

component of the voltage at the i th opening, all the other

voltage components being zero.

As already pointed out in [19] no matrix inversion is

necessary to compute the generalized admittance matrix.

This is due to the fact that the admittance matrix is the

natural representation of a cavity with conducting walls.

When a magnetic wall model is adopted for microstrip

circuit, the impedance matrix is the most efficient network

representation.

The drawback with the Y-matrix is that it possesses po-

lar singularities (see (A2) in the appendix), thus numeri-

cal overflow may occur occasionally. In the computations

made for present study, however, such an event has never

been observed.

When the cavity h,as only one opening, as is the case

of the stub regions 2, 0 0 “ 5 of Fig. l(d), expression (6)

holds for i = j = 1 only,

At the connection between two cells, say cells 1 and 2

of Fig. 1(d), it is easily seen that the continuity of the

magnetic field is equivalent, in network terms, to the di-

rect connection between the corresponding ports of the

equivalent networks.

B, Green’s Function Representations for Rectangular

Cells

Once the general expression (6) for the generalized ad-

mittance matrix has been derived, we obtain now the

expression for the Green’s function relevant to the present

problem. We will refer to a rectangular cell such as cell

No. 1 of Fig. l(d), the specialization to the stub cells

being straightforward. For clarity, the geometry is

sketched in Fig. 3. Outputs No. 1 and N are placed along ‘

the y-axis and correspond to the output ports of the struc-

ture, while outputs 2 to N – 1 are to be connected to the

stubs .

With respect to the general case, a basic simplification

is obtained since the structure of Fig. 1(d) is uniform in

the a--direction and the EM field is excited by the domi-

nant TEIO modes incident from the input waveguides. The

x-dependence is therefore determined by sin (mx /a), or

cos (m/a) depending on the field component, and no

x-component for the electric field exists. The EM field in

each cell can be described by means of a scalar magnetic

potential (LSE modes), or equivalently in terms of the H.

component. In practice, the computation of the dyadic

Green’s function is reduced to the Gn component only.
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Fig. 3. Side-view of a,rectangular resonator corresponding to cell 1 of Fig.

1(d), where outputs ports 2 through N – 1 are connected to short circuited

stubs.

Renaming Gn simply as G, and dropping the

x-dependence, the differential problem (2) becomes

V2G + k’2G = ti(y – y’) 6(Z – z’)

with homogeneous Neumann boundary condition

dG ~

dn =
on S.

In (7) k’2 = k2 – (r/a)2, ‘a’ being the cell size

x-direction, and

(7)

(7’)

in the

v2–a2:a2

ay2 az2”

For a rectangular cell of sizes b and c along they and

z-directions respectively, the Green’s function can be ob-
tained in terms of resonant modes [15]. The resulting

expression is

.G(y; Z, y’, Z’) = i i ‘m’(y’‘)‘~(y”“) *

‘n’0n=Ok’2-(a -E)
(8)

where ~~. ( y, z) are the eigemnodes of the cell:

(9)

Em = lforrn=O, e~ = 2 form # O. G(y, z; y’, z’)

represents the magnetic field distribution HX ( y, .z) due to

a unit pulse of electric field EY ( y‘, z‘ ) or, equivalently,

to a unit pulse of magnetic current MX ( y‘, z ‘).

A considerably more efficient way to express the

Green’s function of our rectangular cell consists of re-

placing the double series over (m, n) in (8) with a single

series over m or n. This can be done by expressing the
EM field in terms of wuveguide modes instead of cavity

modes. Two convenient alternative expressions can be

obtained (see [20]) depending on whether the y- or

z-direction is taken as the propagation direction. For
propagation in the z-direction one obtains

,G = ~fm(y)fm(y’) co’k~:w;~:- “ ) (lo)
m zm Zm

with

where k& = k’2 – k~~ and kY~ = m~/b and

—

Similarly, for propagation in the y-direction the following

expression for the Green’s function is obtained

COS kY~y< COS kY~(b – y>)
~G = Xgm(z) gm(z’)

m kYmsin kY~b

(11)

where k;. = k’2 – k~ and k,., = m~/c.

C. Numerical E@ciency of the Various Representations

The numerical advantage of using a single instead of a

double series needs not to be stressed. The present ap-

proach should not be confused with that in [21], where

two modal series are replaced by one.

The choice between the two alternative expressions (10)

or (11) for G ultimately depends on the convergence of

the resultant series for the generalized Y-matrix of the cell

(see Appendix). In practice, the numerical advantage of

using ~G or ~G is determined by the locations of the ports

and on the sizes of the cell.

In order to illustrate this point, we have computed the

various expressions for the generalized Y-matrix of a rect-

angular cell b x c (b = 9.52 mm, c = 37 mm). For

analogy with the notation adopted for the Green’s func-

tion expressions, we will denote the Y-matrix expressions

with the symbols . Y, z Y, or ~ Y depending on whether

expression (8), (10) or (11) for G is employed. The mag-

netic field eigenvectors of normal modes of rectangular

waveguides have been used as vector basis functions +k,

They are given in the Appendix along with the admittance

matrix elements.

Let us first observe that, since port 1 extends to the

entire b size of the cell, the series for z Y$~l) reduce to a

single term, and provides therefore the most efficient

expression. This is due to the fact that the expanding

functions +k on the outputs have been selected as the nor-

mal modes of the corresponding waveguide. For the same

reason, the double series for . Y~.l) reduces to a single

series that coincides with ~ Y}nl).

To give an idea of the convergence behavior of such

series, Fig. 4 shows the relative error pertaining to the
(2, 1)

series for ~ Y1 ~ or, equivalently ~ Yfi 1), while the con-

vergence behaviors of the series for ~ *1 , ~
Y(Z, 1) Yyil),

~ Y~ 1) is shown in Fig. 5 for a distance dz = 10 mm and

for W2 = 4.5 mm between the two outputs. Note that dif-

ferent vertical scales have been used in these, as well as

in the following figures.

In spite of the good convergence behaviors shown in

Figs. 4 and 5, the series (10) is obviously to be preferred

as it provides the correct value with just one term.



ALESSANDR1 et al.: TECHNIQUE FOR FULLWAVE AUTOMATIC SYNTHESIS OF WAVEGUIDE 1489

0,5

1

-z~-+
o 10 20 30

number of terms

Fig. 4. Convergence behavior of the mutual admittance . 2’1) or ~ Y:’).Y:,

0,1

0-

-o,1-

4

-Q’~
0 10 20 30

mqnber of terms

Fig. 5. Convergence ~~l;he mutual admittances between perpendicular

oWuts: YY21’ (---)> ~yfi’) (---)> ~E”) (—).

‘2”2) which corre-Let us now examine the element Yll

spends to the self-admittance of the dominant mode at

output 2 (W2 = 4.5 mm), i.e., the input admittance seen

at output 2 by the dominant mode when all the other out-

puts are shorted. The convergence behaviors of ~Yfi2) and

Yfi 2) are shown in Fig. 6, while that of the double series

‘Yfl0 2’2) is plotted in Fig. 7.

For a given accuracy (e.g., a relative error of 1 %), the

numerical effort associated with ~the computation of

. Yfi2) is extremely higher (almost 1000 times) than with

the single series (10) or (1 1).

It should be noted that the computation of the self-ad-

mittance is the most cumbersome from a numerical point

of view. For the trans-admittances seen at same physical

port (e.g., output 2), but between different modes (i.e.
using different expanding and, testing functions m # k in

(6)), the convergence is much faster. This is shown, for
(2, 2)

example, in Fig. 8 for ~Y12
(2, 2)

and ~ Y12 and Fig. 9, for

‘2’2) To get an accuracy of the orderthe double series . Y12 .

of 1 %, the double series requires approximately 40 terms,

modes propagating along z

~d

modes propagating

/,, ,,, ,,, ,,-, ,1,
0 10 20 30

number of terms

Fig. 6. Convergence behaviom of the series , Yfi2) and ~ I’fiz).

o

-o,1-

-o,2-
double series

-0,33

-o*4——T———
0 5000 10 100

number of terms

Fig. 7. Convergence behavior of the double series . Yfi 2).

0,2

modes propagating

o,1-

E

-o,2-
modes propagating along y

-.
-0,3 ~ I I I

o 10 20 30
number of terms

Fig. 8. Convergence behavior of, Y%’) and ~ Y\~ 2).

16 terms are required for ~ Y~~2), while only 2 terms are
(2, 2)

enough for ~Y12 .

In the evaluation of the trans-admittances between dif-

ferent physical ports, such as outputs 2 and 3, different
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~“’”:L“Fj
~

-0,05

-0,1 - L

double series

o 50 100 150 200

number of terms

Fig. 9. Convergence behavior ~ Y: 2).

“TTz==

~ o,1-
0 1/

$
5 0,05-
%

o- Ih

?V
modes propagating along z

-0,05 , , , 1 r 1 1 , ,
0 10 20 3

number of terms

Fig. 10. Convergence of, Y: 3) and , Yfi 3) for d3 = 8 mm.

rates of convergence are expected depending on the dis-

tance between the outputs. In particular, when modes

propagating along z are used, only one or two terms are

expected to be necessary to achieve very accurate results.

This is confirmed by Fig. 10, showing the convergence

behaviors of the series , Yfi 3) and ~ Yfi 3) for the trans-ad-

mittance between the dominant modes at outputs 2 and 3
{z,3, The convergencebehavior of oY11Yl~ . ‘2’ 3) is shown in

Fig. 11. Both Figs have been plotted for a distance d3 =

8 mm between output 2 and 3. Only two terms for

z Y! ~2’3) are sufficient to get an almost exact result,

When outputs 2 and 3 are put to a very close distance

d3 = 1 mm, the convergence rate is lower for all series,

as shown in Fig. 12. In any case, the series involving

modes propagating in the z-direction always exhibits the

highest convergence rate, providing very accurate results

with no more than 5 terms.

In summary, the adoption of proper field expansions in

the evaluation of the scalar Green’s functions make it pos-

sible to evaluate almost analytically the generalized ad-

mittance matrices of the rectangular cells into which

waveguide components, and specifically the phase shifter

0,1

10,08 . .

8

/1
double series

~ 0,06

Y
~ 0,04

i??
0,02

“4 l/-

-o,02j, ,,, ,,, ,, l,,,,,,,,,
0 50 100 150 2(

number of terms

1“

Fig. 11. Convergence of. Yfi3) for distance between port 2 and port 3 d3

= 8 mm.

0,2

modes propagating
0,1:

0:
8
Ho
g -o,1-
“iC&
%~ -o,2-

::E
10 20 :

number of terms

Fig. 12. Same as Fig. 10 except with d3 = 1 mm.

sketched in Fig. 1(d), can be segmented. In most cases,

in fact, the Y-matrix elements expansions can be reduced

to just one term. In the examples examined, the worst

case is that of the self admittances which require up to 6

terms to get an error less than 1%.

IV. SYNTHESIS OF WAVEGUIDE PHASE SHIFTER

In the previous Sections rigorous field-theoretical tools

for very fast and accurate computer analyses of wave-

guide components have been described. The theory has

been presented for the case of E-plane waveguide struc-

tures. In this case the EM fields can be described in terms

of LSE(X) modes only, but the same principles apply to

cases when both E- and H-plane discontinuities are pres-

ent.

This section is devoted to the specific application de-

veloped, i.e., to the automatic synthesis of waveguide

phase shifters. Such components are typically employed

in antenna beam-forming networks. Requirements in

terms of wide band and compact design are very strict.

Automatic design tools which can avoid costly experi-

mental work are of paramount importance.
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An effective technique for realizing waveguide fixed

phase shifiers consists of loading a waveguide section with

a number of stubs.

A rigorous field-theory CAD of stub-loaded phase-shif-.

ter has recently been presented by Dittloff et al. [7]. One

limitation of their procedure is that the required phase shift

is obtained with reference to a waveguide section of proper

length. To allow the differential phase shift to be achieved

with respect to a waveguide of the same length, the ‘a’

dimension of the waveguide phase shifter was introduced

in [8] as an additional degree of freedom.

The simultaneous use of stub-loading and cutoff shift-

ing to attain better phase shift characteristics can be qual-

itatively explained by the following arguments.

Basically, a fixed phase shifter is required to produce

in a given frequency range a constant phase shift A40 with

respect to a reference transmission line length. The ideal

phase delay response is obtained by a simple shift of that

of the reference line.

In order to approximate the ideal response one could

change the broader ‘a’ side of the rectangular waveguide,

thus shifting the cutoff frequency. This, however, would

have also the effect of changing the slope of the phase

response, which would become lower if the cutoff is low-

ered.

It can be shown that an opposite effect is obtained by

periodically loading the waveguide with a series induct-

ance realized by short E-plane stubs. The resultant peri-

odic structure has, in a passband, a steeper phase delay

slope. By suitably combining the two effects it is possible

to design extremely compact broad band phase shifters.

Of course, other solutions are possible, e.g., using ca-

pacitive instead of inductive loads.

In both [7] and [8] an optimization procedure is em-

ployed for the design. Unless a good initial guess is avail-

able, the optimization procedure can be extremely com-

puter intensive or even ineffective. A good initial guess

can be obtained by first synthesizing a periodical struc-

ture. This procedure was shortly described in [17] and is

recalled below in a somewhat modified form. For the sake

of simplicity, the synthesis of the initial guess structure is

described in terms of an equivalent transmission line

model, where discontinuity effects are neglected. In prac-

tice, the synthesis can be done (see below) using a wave-

guide model for the periodic structure including most of

such effects.

Let rj,.~~) be the phase delay of the reference wave-

guide, A@O the required constant phase shift. In a fre-

quency range [j, ~z ] the phase response rpP of the phase

shifter must be

4, (~) = ~ref(.f) + Ad.. (12)

An additional constraint to be usually imposed on the

phase shifter is that its length must be shorter than the

reference waveguide by a prescribed amount AL.

The phase constant of the reference line is

@ref(f) =’ Pref(f) (~ + AL) (13)

where Pref ( .f) is the phase constant of the reference line

and L is the length of the phase shifter*. The synthesis of

the phase shifter can be made in terms of an equivalent

transmission line section of the same length, which pro-

duces the same phase shift in the same frequency range.

Let (3P(f) be the phase constant of the equivalent trans-

mission line, then its phase delay is

@p(f) = @p(f)L. (14)

Combining (12)-(14), the phase constant (3P is obtained

as a function of the specification (12) and the length L of

the phase shifter:

O,(f), = &df )(1 + AL/L) + Ad./L. (15)

Observe that while AL is always a positive quantity, A@O

may be either positive or negative. As a consequence, &

can be either greater or smaller than (3,.f.

The above equation (15) defines the synthesis problem

for the equivalent transmission line section. The required

phase constant behavior /3P(f) can be approximated in the

frequency range [ fl, $2] by that of a periodic structure

composed of alternating reactance X and transmission

line sections of characteristic impedance 21 and phase

constant @l (Fig. 13(a)). The reactance are realized with

shorted stubs of lengths d., characteristic impedance Z.

and same phase constant 61.

To reduce mismatching, a convenient choice for the

cell length d was found to be a quarter wavelength of the

periodic structure at center frequency f. = (A + fi) /2,

thus

d = T/(u3po) (16)

where we have put for simplicity & = 6P ( fO ). This as-

sumption makes it possible to determine the total length

of the equivalent transmission line, i.e., the phase shifter

length, for any given number N of cells. Since L = AU,

combining (16) and (15), one obtains

1

(

NT
L=— —–

l%ef,o 2 )

firef,o~ – Ac$. . (17)

The required phase constant &(f) is thus fully deter-

mined in the whole band by (17) and (15). Incidentally,

it can be observed that (17) establishes a minimum num-

ber of cells N for the physical realizability (L s O).

From the theory of periodic structures [18], the follow-

ing relation is obtained for the periodic stmcture of Fig.

13(b):

Cos (f?](i) – cm (Pp d)
3 tan (@Id, ) = 2
z~

(18)
sin (~ld)

where the phase constant of the periodic structure has been
assumed to be the same as the ideal value BP.

*Observe that the length (L + AL) of the reference line must be a posi-
tive quantity for the phase shifter to be realizable. For a zero length ref-
erence line, in fact, a frequency independent phase shift bP (j) = A@O

would result, implying an infinite group velocity.
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Fig. 13. Periodic transmission line (a) and its realization with distributed

--l

elements (b).

a

Fig. 14. Elementary cell of the waveguide phase shifter.

Equation (18) cannot be satisfied but approximately.

The three unknown quantities, namely the normalized

characteristic impedance of the stub (2,/21), the stub

length (d, ) and the phase constant of the line sections (B1),

can be determined by a simple optimization procedure to

minimize the quadratic error in the operating frequency

band. The initial guess for the number N of cell is in-

creased until the input requirements are met.

The synthesized transmission line model of the phase

shifter is then easily translated into a waveguide model

consisting of the connection of N elementary cells, such

that depicted in Fig. 14. Because of the dispersive char-

acter of the waveguide, the transformation is made at cen-

ter frequency. Observe that the phase constant fil of the

transmission lines of Fig. 13 determines the broader ‘a’

size, thus the cutoff frequent y, of the waveguide struc-

ture. Since the phase shifter has normally to be connected
to a reference waveguide, two H-plane steps at the ends

of the phase shifter must be introduced.

The structure synthesized by the above procedure pro-

vides the starting point for the final optimization routine

of the phase shifter. Optimization must be applied in or-

der to compensate for discontinuity effects not included

in the simplified transmission line model and to minimize

the insertion loss of the device.

The synthesis procedure described for the transmission

line model can actually be applied directly to the wave-

guide structure, i.e. using the full-wave model to syn-

thesize the waveguide cell of Fig. 14. There is, in fact, a

correspondence between the four parameters (d, d., 2$/21

and dl ) of the transmission line cell (Fig. 13) and the four

geometrical parameters (d, d., b, and a) of the waveguide

cell (Fig. 14). This is actually the procedure that has been

followed. With such a procedure, most discontinuity ef-

fects, i.e. those due to higher order mode insertion within

the single waveguide cell, are already taken into account

in the synthesis procedure, which thus provides an even

better starting point for the final optimization.

V. COMPUTED AND EXPERIMENTAL RESULTS

Sophisticated phase shifters can be designed automati-

cally with modest computer resources (a 386 IBM PC is

sufficient) by the full-wave synthesis technique described

in the previous Sections. The design input data are used

to generate first a periodically loaded waveguide section.

This is the initial guess for the subsequent optimization

routine where the terminal H-plane steps are included. A

gradient-based (quasi-Newton) optimization routine has

been used.

The theoretical and measured responses of a 9-stub

phase shifter, designed in the band 10.95-12.75 GHz, are

shown in Fig. 15. The phase shifter was designed tp pro-

duce a differential phase shift of Ad = –850 with respect

to a reference waveguide length W = 37.04 mm shorter.

With the notation of Fig. 16, the dimensions of the device

are quoted in Table 1. Note that the width ‘a’ of the phase

shifter is different from the standard dimension of the

waveguide (as a consequence of f?l being different from

l%f).

To give an idea of the numerical accuracy of the var-

ious approaches discussed in this paper, the theoretical

responses in Fig. 15 have been computed using the three

representations of Section III, i.e. using z- and y-propa-

gating modes as well as resonant modes.

All results are in close agreement, particularly, at lower

frequency. The small disagreement observed (particularly

for the phase at high frequencies) is due to the truncations

in the Green’s functions series and to the limited number

of basis functions on the outputs (only 3 in all cases). In

particular, the resonant mode expansion is estimated to be

slightly less accurate. Better agreements at the expense

of CPU time could be achieved increasing the number of

basis functions. As far as the computer time is concerned,

considerable differences are found. In order to generate

the data plotted in Fig. 15, the use of the double series

requires approximately one hour rmd a half, while only 2
minutes are required using the single series relative to

modes propagating along z.

Because of the good initial guess, the whole optimiza-

tion routine requires only twenty minutes on a IBM 386

PC-16 MHz,

Equivalent electrical characteristics are exhibited by the

phase shifter of Fig. 17, although it is made of only 6

instead of 9 stubs. This improvement is due to having

adopted a structure with symmetrical double-stubs. Sym-

metry reduces the effects of higher order modes. The ge-

ometry of the modified phase shifter is quoted in Table II.
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Geometry of the phase shifter. E-plane (a) and H-plane (b) cross

sections.

TABLE I
DIMENSIONS (mm) OF A 9-CELL PHASESHIFTERWITH SINGLESTUBS

a = 16.639 b = 9.52

t, = tg = 13.785 tz = t~ = 13.889 t~ = t, = 13.788

t~ = t~ = 13.893 t~ = 13.615

1, = 1,0 = 11.615 1, = 19 = 5.452 1, = 18 = 4.728
14 = 1, = 4.710 15 = 16 = 4.732

SI = S9 = 2.989 S2 = s8 = 3.0% Ss = S-/ = 3.033
Sb = Se = 3.106 S~ = 2.943

Ref. waveguide: WR75; Phase shift Aq50: –850; Length cliff. AL: 37.04
mm.
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Fig. 17. Computed and measured responses of phase shifter with 6 double
stubs.
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TABLE II
DIMENSIONS (mm) OF A 6-CELL PHASE SHIFTER WITH SYMMETRICAL STUBS

(DIMENSIONS ALONG y REFER TO ONE HALF OF THE ACTUAL STRUCTURE TO
TAKE ADVANTAGE OF SYMMETRY)

a = 16.08 b = 4.76

t, = tc = 7.97 t2= t5= 8.72 t3= f4= 8.26

1, = 16 = 10.80 12 = 16 = 3.60 13 = 1, = 3.68

14 = 3.58

s, =s6 =494 S2 =s5 =5.40 S3 =s4 = 5.13

Ref. waveguide: WR75; Phase shift A@O: –850; Length cliff. AL: 37.04
mm.

Again, the three representations lead to quite close re-

sults, except that the numerical effort is drastically re-

duced using the representation in terms of modes propa-

gating in the z-direction.

VI. CONCLUSION

An efficient computer synthesis technique for wave-

guide components, based on rigorous field-theoretical

models, has been presented and applied specifically to

waveguide fixed phase shifters. The computer code de-

veloped requires only the electrical specifications to gen-

erate the geometrical structure of the components, in,

usually, fifteen to twenty minutes on a 386/16 MHz IBM

PC. The agreement with the experiments is so accurate as

to avoid any tuning of the circuits realized.

The efficiency and accuracy of the technique is based

on i) the adoption of a suitable segmentation technique of

the microwave structure to obtain a very simple but rig-

orous network model; ii) the efficient representation of the

modal series for the electromagnetic fields; iii) a synthesis

procedure based on a simplified model to obtain a good

initial guess for the final full-wave optimization routine.

Within the limits of validity of the planar circuit model

[3], the technique can be applied with simple modifica-

tions to the synthesis of microstrip circuits.

APPENDIX

The expressions for the generalized admittance matrix

elements of a rectangular cell using the field expansion in

terms of modes propagating along z (Fig. 3) are given in

this Appendix. With the simplifications of Section III-B,

the vector basis functions 4$) have only the x-component,

and can therefore be represented by scalar quantities.

Denoting with ti the coordinate where the ith output

port begins, and with Wi the width of this port, we have

@J = c:) Cos

(nz – l)7r(t – t,)

Wi

where the index m is the order of the basis function and

q =

is the normalizing constant.

tance matrix are given by

[

cm—
Wi

The elements of the admit-

where q = o, y, z, and the corresponding expressions for

G are given by (8), (10), and (11). Some particular

expression of the admittance elements are given in the

following with reference to the case q = z.

The admittance seen from port 1 corresponds to the ad-

mittance of a short-circuited section of waveguide of

length c and is trivially given by

(A2)

where e~l = lform=O, c~= 2 for m # O. The same

expression (A2) would also result using . G, ~G instead

of ~G, except the resulting single series has to be summed

analytically to get the ctg function.

The admittance between output port 1, ~ and output

port j can be also expressed by just one term, namely

with

!
z] + ‘J

J;:n = COSkm (C – z) COS ~ (z – Zj ) d~ (A4)
ZJ 1

easily evaluable analytically.

The admittance between two different output ports

placed on the y = O plane is given by a single, rapidly

convergent series of the type

where we have also introduced

The fast convergence of (A5) is essentially due to the

presence of the sine term, which, for large (imaginary)

values of kZmc behaves as an exponential.

The mutual admittance between different modes m, n

at the same physical output is given by
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Observe that each term of the series (A6) is the sum of

three terms. Because of the presence of the hyperbolic

sine the first two terms converge very quickly. The re-

maining term can be easily summed by using the Contour-

Integration method [16, p, 812].
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